If you flip a coin a hundred times and it's heads every time the odds of it being heads on flip 101 is still 50/50. Every week when RNG spins it's a 1/6 chance of being any exotic regardless of what happened before.
https://www.youtube.com/watch?v=xSc4oLA9e8o
Watch this video it very clearly illustrates why compound probability doesn't matter in independent events. The mistake many are making is known as the gambler's fallacy.
The gambler's fallacy, also known as the Monte Carlo fallacy or the fallacy of the maturity of chances, is the mistaken belief that if something happens more frequently than normal during some period, then it will happen less frequently in the future, or that if something happens less frequently than normal during some period, then it will happen more frequently in the future (presumably as a means of balancing nature). In situations where what is being observed is truly random (i.e. independent trials of a random process), this belief, though appealing to the human mind, is false. This fallacy can arise in many practical situations although it is most strongly associated with gambling where such mistakes are common among players.
source: http://en.wikipedia.org/wiki/Gambler%27s_fallacy
Edit: Wanted to clear up the confusion and show some why this is a common mistake.
Your role as a moderator enables you immediately ban this user from messaging (bypassing the report queue) if you select a punishment.
7 Day Ban
7 Day Ban
30 Day Ban
Permanent Ban
This site uses cookies to provide you with the best possible user experience. By clicking 'Accept', you agree to the policies documented at Cookie Policy and Privacy Policy.
Accept
This site uses cookies to provide you with the best possible user experience. By continuing to use this site, you agree to the policies documented at Cookie Policy and Privacy Policy.
close
Our policies have recently changed. By clicking 'Accept', you agree to the updated policies documented at Cookie Policy and Privacy Policy.
Accept
Our policies have recently changed. By continuing to use this site, you agree to the updated policies documented at Cookie Policy and Privacy Policy.