Natural Number: the counting numbers:
1, 2, 3 ,4, 5...
Prime Number: natural number who's only natural number factors are 1 and itself:
1, 2, 3, 5, 7...
-
No, but the rate at which the primes increase would be larger.
-
What an amusing coincidence. Vsauce just posted this a few hours ago. Hopefully this can clear up the misconceptions people seem to have about differing infinities.
-
L'Hospital's Rule, mang. I'd say there are more natural numbers. They both go to infinity, but the rate of prime numbers slows waaaaay down as they go, compared to the steady natural numbers, so... Yeah. More natural numbers.
-
Trick question, there is infinite of both so one cannot have more than the other
-
1 isn't a prime number.
-
Infinite. Do you're math.
-
I agree that infinity doesn't have a magnitude and so on, and under other circumstances I would say no because there is an infinite amount of both. However, considering that all prime numbers are natural numbers, the answer is yes.
-
The people in this thread apparently have never taken a class on set theory. You people do realize that there are different types of infinities right? Some infinities are bigger than other infinities.
-
Some infinities are bigger than others
-
Are there more -blam!-s than I can give in this comment?
-
No, they both go on infinitely
-
8 is the most natural number. Because it looks like boobs.
-
No because you can't count all of the numbers. For each natural number you can find a prime number to correspond with it. Both can get infinitely large and still correspond with each other without ever reaching an "end."
-
There are infinite of both
-
Numbers are infinite.
-
Technically no, because all numbers are infinite, and no infinity is less or more than another. It depends on how you view "more." If you speak of the natural numbers and prime numbers increasing at a constant rate relative to one another, then there will be "more" natural numbers.
-
Both lists are infinite. Thus, one is not bigger than the other.
-
Edited by Kamots: 4/11/2016 7:23:43 PMThe question boils down to how you view the concept of "more". From a concentration standpoint, there are obviously more natural numbers in most given ranges than there are prime numbers. Obviously the concentration of natural numbers is 100% versus the primes, which would approach 0 at larger ranges. However, it is possible to create a bijection between the natural numbers and prime numbers, which means that for every natural number there is a uniquely matched prime number. In this way the two sets of numbers are equal in order (there are the same amount of natural numbers and prime numbers). Personally, I think the term "more" in this context implies the latter. I'd be surprised if anyone sincerely considered concentration in their answer.
-
They are equal. Oddly enough.
-
But if there is an infinite amount of numbers there is no yes or no answer.
-
Considering all natural numbers are also prime numbers, yes there are more natural numbers.
-
There is an infinite amount of both, so I guess you could say they're equal
-
anyone who says no and tries to justify it is really stubborn
-
Both represent an infinite set right?
-
Some infinities are larger than others
-
There are an infinite number of numbers, so in theory there are an infinite number of both.